If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6p^2-20p-9=0
a = 6; b = -20; c = -9;
Δ = b2-4ac
Δ = -202-4·6·(-9)
Δ = 616
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{616}=\sqrt{4*154}=\sqrt{4}*\sqrt{154}=2\sqrt{154}$$p_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-20)-2\sqrt{154}}{2*6}=\frac{20-2\sqrt{154}}{12} $$p_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-20)+2\sqrt{154}}{2*6}=\frac{20+2\sqrt{154}}{12} $
| -5x+11=-5×+11 | | 4y+10=5y-18 | | 17.3t-14.33=18.6t-4.19 | | 4x^2-6x=x=-3 | | -9+12x+-10-4x-2x=47 | | 4x^2-6x=x+-3 | | 180-17x=75 | | x=4=31 | | x-7=66 | | 4m+14=6m-2m | | x2+12x+37=0 | | 6.x+3=15 | | 10a-4=-4 | | x-6=79 | | 10y+4-13y=20-2y | | 3c-12=90 | | -12+10k=-9k+16k+18 | | 5g+6=2g | | -4u+1=18-3u | | 8+10-3r=-9+6r | | 9-2t-10t=-9-10t | | 20-4p=16p | | 8+6c=26 | | x/(2700000+x)=0.0578 | | x/0.2=0.4 | | -7q-19=14+4q | | 5×n=125 | | 9d^2-9d=0 | | y=10(1+0.5)^5 | | -2(x-7)=x | | -61+5n=56n | | 14h-19=16h+17 |